References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Bozdogan, H. (1987). Model selection and akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345–370. https://doi.org/10.1007/BF02294361
Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307. https://doi.org/10.1348/000711007X193957
de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130. https://doi.org/10.3102/1076998607309474
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7
de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical q-matrix validation. Psychometrika, 81(2), 253–273. https://doi.org/10.1007/s11336-015-9467-8
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333–353. https://doi.org/10.1007/bf02295640
de la Torre, J., & Ma, W. (2016). Cognitive diagnosis modeling: A general framework approach and its implementation in r.
Everitt, B., & Howell, D. C. (Eds.). (2005). Encyclopedia of statistics in behavioral science. John Wiley & Sons.
Feinberg, R., & Rubright, J. (2016). Conducting Simulation Studies in Psychometrics. 35(2), 36–49. https://onlinelibrary.wiley.com/doi/10.1111/emip.12111
Gao, Y., Zhai, X., Bae, A., & Ma, W. (2023). Rasch-CDM: Applying rasch and cognitive diagnosis models to assess learning progression (X. Liu & W. Boone, Eds.). Springer Nature.
Haertel, E. H. (1989). Using Restricted Latent Class Models to Map the Skill Structure of Achievement Items. Journal of Educational Measurement, 26(4), 301–321. https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
Hartz, S. M. (n.d.). A bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality [PhD thesis]. https://www.proquest.com/docview/305590285/abstract/20500E9536DD4FB4PQ/1
Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables. Psychometrika, 74(2), 191–210. https://doi.org/10.1007/s11336-008-9089-5
Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407–419. https://doi.org/10.1177/0013164410388832
Junker, B. W., & Sijtsma, K. (2001). Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory. Applied Psychological Measurement, 25(3), 258–272. https://doi.org/10.1177/01466210122032064
Kim, D., & Lindsay, B. G. (2015). Empirical identifiability in finite mixture models. Annals of the Institute of Statistical Mathematics, 67(4), 745–772. https://doi.org/10.1007/s10463-014-0474-9
Köhn, H.-F., & Chiu, C.-Y. (2018). How to build a complete q-matrix for a cognitively diagnostic test. Journal of Classification, 35(2), 273–299.
Ma, W., & de la Torre, J. (2020). An empirical q-matrix validation method for the sequential generalized DINA model. The British Journal of Mathematical and Statistical Psychology, 73(1), 142–163. https://doi.org/10.1111/bmsp.12156
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187–212. https://doi.org/10.1007/bf02294535
McDonald, R. P. (1982). A note on the investigation of local and global identifiability. Psychometrika.
Nájera, P., Sorrel, M. A., & Abad, F. J. (2019). Reconsidering cutoff points in the general method of empirical q-matrix validation. Educational and Psychological Measurement, 79(4), 727–753. https://doi.org/10.1177/0013164418822700
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.
Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: theory, methods, and applications. Guilford Press.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. https://doi.org/10.1007/BF02294360
Tan, Z., Torre, J. de la, Ma, W., Huh, D., Larimer, M. E., & Mun, E.-Y. (2022). A Tutorial on Cognitive Diagnosis Modeling for Characterizing Mental Health Symptom Profiles Using Existing Item Responses. Prevention Science. https://doi.org/10.1007/s11121-022-01346-8
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305. https://doi.org/10.1037/1082-989X.11.3.287
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47(2), 175–186. https://doi.org/10.1007/BF02296273
Tjoe, H., & Torre, J. de la. (2014). The identification and validation process of proportional reasoning attributes: an application of a cognitive diagnosis modeling framework. Mathematics Education Research Journal, 26(2), 237–255. https://doi.org/10.1007/s13394-013-0090-7
Xu, G. (2019). Identifiability and Cognitive Diagnosis Models (M. von Davier & Y.-S. Lee, Eds.; pp. 333–357). Springer International Publishing. http://link.springer.com/10.1007/978-3-030-05584-4_16
Xu, X., & Davier, M. von. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report Series, 2008(1), i18.
Zhan, P., Jiao, H., Man, K., & Wang, L. (2019). Using JAGS for bayesian cognitive diagnosis modeling: A tutorial. Journal of Educational and Behavioral Statistics, 44(4), 473–503. https://doi.org/10.3102/1076998619826040