7.7 Full information statistics

Full-information statistics compared model-predicted probabilities of all item response patterns with the observed proportions.

If a test has 5 items, there are \(2^5\) possible item response patterns. Let \(p_y\) and \(\hat{\pi}_y\) be the observed and predicted proportions of item response pattern \(y\).

After fitting a model to the data, we have \[ \hat{\pi}_y=\sum_{c=1}^{2^K}L(y|\alpha_c)p(\alpha_c) \]
TABLE 7.1: An illustration
Item.1 Item.2 Item.3 Item.4 Item.5 observed predicted
1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 1 0
6 0 0 0 0 1
7 1 1 0 0 0
8 1 0 1 0 0
9 1 0 0 1 0
10 1 0 0 0 1
11 0 1 1 0 0
12 0 1 0 1 0
13 0 1 0 0 1
14 0 0 1 1 0
15 0 0 1 0 1
16 0 0 0 1 1
17 1 1 1 0 0
18 1 1 0 1 0
19 1 1 0 0 1
20 1 0 1 1 0
21 1 0 1 0 1
22 1 0 0 1 1
23 0 1 1 1 0
24 0 1 1 0 1
25 0 1 0 1 1
26 0 0 1 1 1
27 1 1 1 1 0
28 1 1 1 0 1
29 1 1 0 1 1
30 1 0 1 1 1
31 0 1 1 1 1
32 1 1 1 1 1