4.7 R-RUM Estimation
To estimate the R-RUM, call GDINA function again and specify the data and Q-matrix as the first two arguments.
Code
# Fit the data using R-RUM
<- GDINA(dat = data1, Q = Q1, model = "RRUM", verbose = 0) fit.rrum
To print some general model estimation information, type fit.rrum in Rstudio console:
Code
fit.rrum
## Call:
## GDINA(dat = data1, Q = Q1, model = "RRUM", verbose = 0)
##
## GDINA version 2.9.3 (2022-08-17)
## ===============================================
## Data
## -----------------------------------------------
## # of individuals groups items
## 837 1 15
## ===============================================
## Model
## -----------------------------------------------
## Fitted model(s) = RRUM
## Attribute structure = saturated
## Attribute level = Dichotomous
## ===============================================
## Estimation
## -----------------------------------------------
## Number of iterations = 49
##
## For the final iteration:
## Max abs change in item success prob. = 0.0001
## Max abs change in mixing proportions = 0.0000
## Change in -2 log-likelihood = 0.0004
## Converged? = TRUE
##
## Time used = 0.3621 secs
To extract item parameters, we can use coef function, as in
Code
coef(fit.rrum)
## $`Item 1`
## P(0) P(1)
## 0.93 0.98
##
## $`Item 2`
## P(0) P(1)
## 0.27 0.83
##
## $`Item 3`
## P(0) P(1)
## 0.54 0.80
##
## $`Item 4`
## P(0) P(1)
## 0.48 0.88
##
## $`Item 5`
## P(00) P(10) P(01) P(11)
## 0.33 0.65 0.46 0.92
##
## $`Item 6`
## P(00) P(10) P(01) P(11)
## 0.11 0.47 0.17 0.73
##
## $`Item 7`
## P(00) P(10) P(01) P(11)
## 0.15 0.33 0.36 0.80
##
## $`Item 8`
## P(00) P(10) P(01) P(11)
## 0.20 0.64 0.25 0.80
##
## $`Item 9`
## P(00) P(10) P(01) P(11)
## 0.17 0.40 0.29 0.68
##
## $`Item 10`
## P(00) P(10) P(01) P(11)
## 0.37 0.73 0.37 0.72
##
## $`Item 11`
## P(00) P(10) P(01) P(11)
## 0.50 0.64 0.71 0.90
##
## $`Item 12`
## P(00) P(10) P(01) P(11)
## 0.19 0.36 0.36 0.70
##
## $`Item 13`
## P(00) P(10) P(01) P(11)
## 0.14 0.24 0.34 0.59
##
## $`Item 14`
## P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)
## 0.14 0.52 0.17 0.14 0.64 0.51 0.17 0.63
##
## $`Item 15`
## P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)
## 0.15 0.27 0.21 0.22 0.39 0.42 0.32 0.59
To obtain delta parameters, specify what = “delta”:
Code
coef(fit.rrum, what = "delta")
## $`Item 1`
## d0 d1
## -0.070 0.049
##
## $`Item 2`
## d0 d1
## -1.3 1.1
##
## $`Item 3`
## d0 d1
## -0.62 0.39
##
## $`Item 4`
## d0 d1
## -0.73 0.60
##
## $`Item 5`
## d0 d1 d2
## -1.12 0.69 0.34
##
## $`Item 6`
## d0 d1 d2
## -2.22 1.46 0.44
##
## $`Item 7`
## d0 d1 d2
## -1.93 0.81 0.90
##
## $`Item 8`
## d0 d1 d2
## -1.62 1.17 0.24
##
## $`Item 9`
## d0 d1 d2
## -1.77 0.84 0.54
##
## $`Item 10`
## d0 d1 d2
## -0.983 0.670 -0.017
##
## $`Item 11`
## d0 d1 d2
## -0.69 0.24 0.35
##
## $`Item 12`
## d0 d1 d2
## -1.68 0.66 0.65
##
## $`Item 13`
## d0 d1 d2
## -1.99 0.54 0.91
##
## $`Item 14`
## d0 d1 d2 d3
## -1.956 1.308 0.205 -0.022
##
## $`Item 15`
## d0 d1 d2 d3
## -1.93 0.62 0.35 0.43
We can also obtain the RRUM original parameters, using the following code:
Code
coef(fit.rrum, what = "rrum")
## $`Item 1`
## pi* r1
## 0.98 0.95
##
## $`Item 2`
## pi* r1
## 0.83 0.32
##
## $`Item 3`
## pi* r1
## 0.80 0.68
##
## $`Item 4`
## pi* r1
## 0.88 0.55
##
## $`Item 5`
## pi* r1 r2
## 0.92 0.50 0.71
##
## $`Item 6`
## pi* r1 r2
## 0.73 0.23 0.64
##
## $`Item 7`
## pi* r1 r2
## 0.80 0.44 0.41
##
## $`Item 8`
## pi* r1 r2
## 0.80 0.31 0.79
##
## $`Item 9`
## pi* r1 r2
## 0.68 0.43 0.58
##
## $`Item 10`
## pi* r1 r2
## 0.72 0.51 1.02
##
## $`Item 11`
## pi* r1 r2
## 0.90 0.79 0.71
##
## $`Item 12`
## pi* r1 r2
## 0.70 0.51 0.52
##
## $`Item 13`
## pi* r1 r2
## 0.59 0.58 0.40
##
## $`Item 14`
## pi* r1 r2 r3
## 0.63 0.27 0.81 1.02
##
## $`Item 15`
## pi* r1 r2 r3
## 0.59 0.54 0.70 0.65