4.3 Data and Q-matrix
data1 and data2 are two data sets, each consisting of responses of 837 individuals to 15 items generated based on a proportional reasoning assessment. Q1 and Q2 are the associated Q-matrices, each involving 3 attributes.
To conduct CDM anlyses, you need to have at least
a \(N\times J\) response matrix (Missing values allowed)
a \(J \times K\) Q-matrix
First, let us import the data and Q-matrix into R.
Code
library(GDINA)
## data1 <- read.table(file = "data1.dat", header = TRUE)
head(data1)
## Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11
## 1 1 1 1 1 1 0 1 1 0 1 1
## 2 1 1 1 1 0 0 0 0 1 0 1
## 3 1 0 1 0 1 1 1 1 1 0 1
## 4 1 0 1 0 1 0 0 0 1 1 1
## 5 1 0 0 0 0 0 0 0 0 0 1
## 6 1 0 1 1 1 1 1 1 0 1 1
## Item12 Item13 Item14 Item15
## 1 1 0 1 0
## 2 1 0 0 0
## 3 0 0 0 0
## 4 0 0 1 0
## 5 0 0 1 1
## 6 0 1 0 0
Code
## Q1 <- read.table(file = "Q1.txt")
Q1
## V1 V2 V3
## 1 1 0 0
## 2 0 0 1
## 3 0 1 0
## 4 0 0 1
## 5 1 1 0
## 6 1 1 0
## 7 1 1 0
## 8 0 1 1
## 9 0 1 1
## 10 0 1 1
## 11 0 1 1
## 12 1 0 1
## 13 1 0 1
## 14 1 1 1
## 15 1 1 1