4.10 Estimation of CDMs with attribute hierarchy
We can also estimate CDMs with various attribute hierarchies. For example, if we assume A1 is a prerequisite for A2 and A3, we can use the following code to fit the data:
Code
<- list(c(1, 2), c(1, 3))
diverg <- att.structure(diverg, 3)
struc <- GDINA(dat = data1, Q = Q1, att.str = diverg, att.dist = "saturated",
modp1 verbose = 0)
modp1
## Call:
## GDINA(dat = data1, Q = Q1, att.dist = "saturated", att.str = diverg,
## verbose = 0)
##
## GDINA version 2.9.3 (2022-08-17)
## ===============================================
## Data
## -----------------------------------------------
## # of individuals groups items
## 837 1 15
## ===============================================
## Model
## -----------------------------------------------
## Fitted model(s) = GDINA
## Attribute structure = saturated
## Attribute level = Dichotomous
## ===============================================
## Estimation
## -----------------------------------------------
## Number of iterations = 169
##
## For the final iteration:
## Max abs change in item success prob. = 0.0001
## Max abs change in mixing proportions = 0.0000
## Change in -2 log-likelihood = 0.0004
## Converged? = TRUE
##
## Time used = 0.1488 secs
Code
coef(modp1, "lambda")
## p(000) p(100) p(110) p(101) p(111)
## 0.195 0.056 0.256 0.287 0.206