5.4 Joint maximum likelihood estimation
When assuming all students are independent, the joint likelihood \[\begin{equation} L( {\mathbf{Y}}|{\alpha},\mathbf{g},\mathbf{s})=\prod_{i = 1}^NL( {\mathbf{Y}_i}|{\alpha_i}) \end{equation}\] The joint maximum likelihood estimation (JMLE) finds \({\alpha},\mathbf{g},\mathbf{s}\) that can maximize \(L( {\mathbf{Y}}|{\alpha},\mathbf{g},\mathbf{s})\) or its logarithm.
Neyman & Scott (1948) has showed that JMLE produced problematic estimates of parameters related with individuals.
References
Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.