7.12 Limited information statistics (Cont’d)
We can use modelfit function in the package to calculate \(M_2\) statistic and \(\text{RMSEA}_2\):
Code
library(GDINA)
modelfit(fit1)
## Test-level Model Fit Evaluation
##
## Relative fit statistics:
## -2 log likelihood = 15050 ( number of parameters = 37 )
## AIC = 15124 BIC = 15299
## CAIC = 15336 SABIC = 15181
##
## Absolute fit statistics:
## M2 = 153 df = 83 p = 0
## RMSEA2 = 0.032 with 90 % CI: [ 0.024 , 0.04 ]
## SRMSR = 0.047
Code
modelfit(fit2)
## Test-level Model Fit Evaluation
##
## Relative fit statistics:
## -2 log likelihood = 14863 ( number of parameters = 67 )
## AIC = 14997 BIC = 15314
## CAIC = 15381 SABIC = 15101
##
## Absolute fit statistics:
## M2 = 61 df = 53 p = 0.21
## RMSEA2 = 0.013 with 90 % CI: [ 0 , 0.027 ]
## SRMSR = 0.027
Code
modelfit(fit3)
## Test-level Model Fit Evaluation
##
## Relative fit statistics:
## -2 log likelihood = 14887 ( number of parameters = 50 )
## AIC = 14987 BIC = 15224
## CAIC = 15274 SABIC = 15065
##
## Absolute fit statistics:
## M2 = 70 df = 70 p = 0.49
## RMSEA2 = 0 with 90 % CI: [ 0 , 0.02 ]
## SRMSR = 0.028