3.3 Attribute Profiles

When \(K=3\), the total number of latent classes is \(2^K=8\)

TABLE 3.1: Attribute profiles
A1 A2 A3
Latent class 1 0 0 0
Latent class 2 1 0 0
Latent class 3 0 1 0
Latent class 4 0 0 1
Latent class 5 1 1 0
Latent class 6 1 0 1
Latent class 7 0 1 1
Latent class 8 1 1 1

If item j measures attributes 2 and 3 but not attribute 1, mastering attribute 1 or not will have no impact on the success probability

Using notations from (de la Torre, 2011), Let \(K\) be the number of attributes in the test and \(K_j^*\) the number of attributes involved in item \(j\)

Assume \(K=3\) and \(K_j^*=2\), we have \(2^3\) latent classes can be collapsed into \(2^{K_j^*}=4\) latent groups:

References

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179–199. https://doi.org/10.1007/s11336-011-9207-7